Prevalence of Metallo Beta-Lactamase in Non-Fermentative Gram-Negative Bacilli from Clinical Isolates by Phenotypic Methods in a Tertiary Care Hospital
Keywords:
Acinetobacter Species, Combination Disk Test (CDT), Double Disk Synergy Test (DDST), Metallo-β-lactamase (MBL), Non-Fermentative Gram-Negative Bacilli (NFGNB), Pseudomonas aeruginosaAbstract
Background: Non-Fermentative Gram-Negative Bacilli (NFGNB), particularly Pseudomonas aeruginosa and Acinetobacter species, are major contributors to hospital-acquired infections and are increasingly associated with multidrug resistance due to Metallo-β-lactamase (MBL) production. These enzymes confer resistance to carbapenems and pose significant therapeutic challenges. Objective: To determine the prevalence of MBL-producing NFGNB from clinical specimens using phenotypic methods in a tertiary care hospital in Chennai. Methods: A cross-sectional study was conducted from August to October 2023, including 148 non- duplicate clinical isolates of NFGNB. Phenotypic detection of MBL was performed using the Combination Disk Test (CDT) and Double Disk Synergy Test (DDST). Antimicrobial susceptibility testing was conducted using the Kirby-Bauer disk diffusion method as per CLSI guidelines. Results: Among the isolates, 51% were Pseudomonas aeruginosa and 49% were Acinetobacter spp. CDT detected MBL production in 63.5% of isolates, while DDST detected 59.5%. MBL production was higher in Acinetobacter spp. (59.5%) compared to P. aeruginosa (40.4%). The kappa value (κ = 0.6–0.7) indicated good agreement between CDT and DDST. High rates of resistance to imipenem and meropenem were noted. COPD emerged as a borderline significant factor (p=0.058) influencing MBL positivity. Conclusion: The high prevalence of MBL-producing NFGNB highlights the urgent need for routine phenotypic screening to guide antimicrobial therapy and implement effective infection control strategies. CDT and DDST remain reliable, cost-effective methods in resource-limited settings. Further molecular studies are recommended for confirmation and surveillance.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Journal of Health and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
1. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010; 362(19): 1804-13.
2. Toussaint KA, Gallagher JC. β-Lactam/β-lactamase inhibitor combinations: from then to now. Ann Pharmacother. 2015; 49(1):86-98. https://doi.org/10.1177/ 1060028014556652 PMid:25361682.
3. Laupland KB, Parkins MD, Church DL, Gregson DB, Louie TJ, Conly JM, et al. Population-based epidemiological study of infections caused by carbapenem-resistant Pseudomonas aeruginosa in the Calgary Health Region: importance of metallo-β-lactamase-producing strains. J Infect Dis.
2005; 192(9):1606-12. https://doi.org/10.1086/444469 PMid:16206075.
4. Rodríguez-Baño J, Cisneros JM, Cobos-Trigueros N, Fresco G, Navarro-San Francisco C, Gudiol C, et al. Diagnosis and antimicrobial treatment of invasive infections due to multidrug-resistant Enterobacteriaceae: guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology. Enferm Infecc Microbiol Clin. 2015; 33(5): 337.e1-21. https://doi.org/10.1016/j.eimc.2014.11.009 PMid:25600218.
5. Walsh TR. Emerging carbapenem mases: A global perspective. Int J Anti microb Agents. 2010; 36 Suppl 3: bS8- 14.
6. Behera B, Mathur P, Das A, Kapil A, Sharma V. An evaluation of four different phenotypic techniques for detection of metallo-β-lactamase producing Pseudomonas aeruginosa. Indian J Med Microbiol. 2008; 26(3):233-7. https://doi.org/10.1016/S0255-0857(21)01868-5 PMid:18695320.
7. Falagas ME, Mavroidi A, Soteriades ES, Vardakas KZ, Karageorgopoulos DE. Global epidemiology and antimicrobial resistance of metallo-β-lactamase (MBL)producing Acinetobacter clinical isolates: A systematic review. Pathogens. 2025; 14(6):557. https://doi.org/10.3390/pathogens14060557 PMid:40559565 PMCid: PMC12196140.
8. Kumar SH, De AS, Baveja SM, Gore MA. Prevalence and risk factors of metallo β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in burns and surgical wards in atertiary care hospital. J Lab Physicians. 2012; 4(1):39-42. https://doi.org/10.4103/0974-2727.98670 PMid:22923921 PMCid: PMC3425263.
9. Sefraoui I, Berrazeg M, Drissi M, Rolain JM. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa clinical strains isolated from western Algeria between 2009 and 2012. Microb Drug Resist. 2014; 20(2):156-61. https://doi.org/10.1089/mdr.2013.0161 PMid:24320688.
10. Microbiological profile of nosocomial infections due to gram-negative lactose non-fermentative bacteria in a teaching hospital of Gujarat. J Pure Appl Microbiol. 2021;11.
11. Phenotypic methods for the detection of metallo-betalactamase production by gram-negative bacterial isolates from hospitalized patients in a tertiary care hospital in India. J Pure Appl Microbiol. 2021;1
12. Jayalakshmi J, Appalaraju B, Shanmugam P. Comparison of phenotypic methods for the detection of metallo-βlactamase and extended-spectrum β-lactamase among Pseudomonas aeruginosa. Int J Pharm Biol Sci. 2019; 9(2): 1-5.
13. Sahoo RK, Mohanty S, Dash M. Phenotypic detection of metallo-β-lactamase in Acinetobacter baumannii isolates from a tertiary care hospital. J Clin Diagn Res. 2021; 15(4): DC01-4.
14. Clinical and Laboratory Standards Institute. Performancestandards for antimicrobial susceptibility testing. 31sted. CLSI supplement M100. Wayne, PA: CLSI; 2021.
15. Sharma R, Gupta N. Prevalence and antibiotic resistance pattern of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from clinical specimens in a tertiary care hospital. Indian J Med Microbiol. 2023; 41(2):123-8.
16. Chowdhury RA, Sharmin S, Chowdhury KAH, Akter N, Ahmed S, Choudhury GN. Comparison of combined disc synergy test and double disc synergy test for phenotypic detection of metallo-β- lactamase among clinical isolates of gram-negative bacilli. Int J Res MedSci. 2022; 10(7):1402. https://doi.org/10.18203/2320-6012.ijrms20221782
17. Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin Infect Dis. 2019; 69 Suppl 7: S521-8. https://doi.org/10.1093/ cid/ciz824 PMid:31724045 PMCid: PMC6853758.
18. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect Dis. 2010; 10(9):597-602. https://doi.org/10.1016/S1473-3099(10)70143-2 PMid:20705517.
19. Yong D, Lee K, Yum JH, et al. Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002; 40(10):3798-801. https://doi.org/10.1128/JCM.40.10.3798-3801.2002 PMid:12354884 PMCid: PMC130862.
20. Tsakris A, Poulou A, Pournaras S, et al. A simple phenotypic method for the differentiation of metallo-β-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J Anti Microb Chemother. 2010; 65(8):1664-71. https://doi.org/10.1093/jac/dkq210 PMid: 20542902.
21. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Entero bacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011; 53(1):60-7. https://doi.org/10.1093/cid/cir202 PMid:21653305.
22. UrbanC, Mariano N, Rahal JJ. Colistin-resistant Acinetobacter baumannii. Lancet. 2001; 358(9276):532-3.
23. Paterson DL. The role of antimicrobial management programs in optimizing antibiotic prescribing within hospitals. Clin Infect Dis. 2006; 42 Suppl2:S90-5.
